Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587075

RESUMO

Inflammatory lymphangiogenesis is intimately linked to immune regulation and tissue homeostasis. However, current evidence has suggested that classic lymphatic vessels are physiologically absent in intraocular structures. Here, we show that neolymphatic vessels were induced in the iris after corneal alkali injury (CAI) in a VEGFR3-dependent manner. Cre-loxP-based lineage tracing revealed that these lymphatic endothelial cells (LECs) originate from existing Prox1+ lymphatic vessels. Notably, the ablation of iridial lymphangiogenesis via conditional deletion of VEGFR3 alleviated the ocular inflammatory response and pathological T cell infiltration. Our findings demonstrate that iridial neolymphatics actively participate in pathological immune responses following injury and suggest intraocular lymphangiogenesis as a valuable therapeutic target for the treatment of ocular inflammation.


Assuntos
Lesões da Córnea , Linfangiogênese , Humanos , Linfangiogênese/fisiologia , Células Endoteliais , Álcalis , Linfócitos T , Inflamação , Iris
2.
Cell Commun Signal ; 22(1): 201, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566083

RESUMO

Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Vasos Linfáticos , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Metástase Linfática/patologia , Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Microambiente Tumoral
3.
Front Immunol ; 15: 1349500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464522

RESUMO

Lymphatic vessels have been increasingly appreciated in the context of immunology not only as passive conduits for immune and cancer cell transport but also as key in local tissue immunomodulation. Targeting lymphatic vessel growth and potential immune regulation often takes advantage of vascular endothelial growth factor receptor-3 (VEGFR-3) signaling to manipulate lymphatic biology. A receptor tyrosine kinase, VEGFR-3, is highly expressed on lymphatic endothelial cells, and its signaling is key in lymphatic growth, development, and survival and, as a result, often considered to be "lymphatic-specific" in adults. A subset of immune cells, notably of the monocyte-derived lineage, have been identified to express VEGFR-3 in tissues from the lung to the gut and in conditions as varied as cancer and chronic kidney disease. These VEGFR-3+ macrophages are highly chemotactic toward the VEGFR-3 ligands VEGF-C and VEGF-D. VEGFR-3 signaling has also been implicated in dictating the plasticity of these cells from pro-inflammatory to anti-inflammatory phenotypes. Conversely, expression may potentially be transient during monocyte differentiation with unknown effects. Macrophages play critically important and varied roles in the onset and resolution of inflammation, tissue remodeling, and vasculogenesis: targeting lymphatic vessel growth and immunomodulation by manipulating VEGFR-3 signaling may thus impact macrophage biology and their impact on disease pathogenesis. This mini review highlights the studies and pathologies in which VEGFR-3+ macrophages have been specifically identified, as well as the activity and polarization changes that macrophage VEGFR-3 signaling may elicit, and affords some conclusions as to the importance of macrophage VEGFR-3 signaling in disease.


Assuntos
Linfangiogênese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linfangiogênese/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Macrófagos/metabolismo
4.
Adv Biol (Weinh) ; 8(4): e2400031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400704

RESUMO

Despite the crucial role of lymphangiogenesis during development and in several diseases with implications for tissue regeneration, immunity, and cancer, there are significantly fewer tools to understand this process relative to angiogenesis. While there has been a major surge in modeling angiogenesis with microphysiological systems, they have not been rigorously optimized or standardized to enable the recreation of the dynamics of lymphangiogenesis. Here, a Lymphangiogenesis-Chip (L-Chip) is engineered, within which new sprouts form and mature depending upon the imposition of interstitial flow, growth factor gradients, and pre-conditioning of endothelial cells with growth factors. The L-Chip reveals the independent and combinatorial effects of these mechanical and biochemical determinants of lymphangiogenesis, thus ultimately resulting in sprouts emerging from a parent vessel and maturing into tubular structures up to 1 mm in length within 4 days, exceeding prior art. Further, when the constitution of the pre-conditioning cocktail and the growth factor cocktail used to initiate and promote lymphangiogenesis are dissected, it is found that endocan (ESM-1) results in more dominant lymphangiogenesis relative to angiogenesis. Therefore, The L-Chip provides a foundation for standardizing the microfluidics assays specific to lymphangiogenesis and for accelerating its basic and translational science at par with angiogenesis.


Assuntos
Linfangiogênese , Neoplasias , Humanos , Linfangiogênese/fisiologia , Líquido Extracelular , Células Endoteliais/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia
5.
Int J Mol Med ; 53(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391009

RESUMO

Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Vasos Linfáticos , Humanos , Linfangiogênese/fisiologia , Doenças Cardiovasculares/metabolismo , Vasos Linfáticos/metabolismo , Cardiopatias/metabolismo , Coração
6.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414014

RESUMO

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-37217282

RESUMO

Circulating vascular endothelial growth factor (VEGF) ligands and receptors are central regulators of vasculogenesis, angiogenesis, and lymphangiogenesis. In response to VEGF ligand binding, VEGF receptor tyrosine kinases initiate the chain of events that transduce extracellular signals into endothelial cell responses such as survival, proliferation, and migration. These events are controlled by intricate cellular processes that include the regulation of gene expression at multiple levels, interactions of numerous proteins, and intracellular trafficking of receptor-ligand complexes. Endocytic uptake and transport of macromolecular complexes through the endosome-lysosome system helps fine-tune endothelial cell responses to VEGF signals. Clathrin-dependent endocytosis remains the best understood means of macromolecular entry into cells, although the importance of non-clathrin-dependent pathways is increasingly recognized. Many of these endocytic events rely on adaptor proteins that coordinate internalization of activated cell-surface receptors. In the endothelium of both blood and lymphatic vessels, epsins 1 and 2 are functionally redundant adaptors involved in receptor endocytosis and intracellular sorting. These proteins are capable of binding both lipids and proteins and are important for promoting curvature of the plasma membrane as well as binding ubiquitinated cargo. Here, we discuss the role of epsin proteins and other endocytic adaptors in governing VEGF signaling in angiogenesis and lymphangiogenesis and discuss their therapeutic potential as molecular targets.


Assuntos
Linfangiogênese , Fator A de Crescimento do Endotélio Vascular , Humanos , Linfangiogênese/fisiologia , Ligantes , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose , Clatrina/metabolismo
8.
Front Biosci (Landmark Ed) ; 28(11): 277, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-38062830

RESUMO

BACKGROUND: The dilation of lymphatic vessels plays a critical role in maintaining heart function, while a lack thereof could contribute to heart failure (HF), and subsequently to an acute myocardial infarction (AMI). Macrophages participate in the induction of lymphangiogenesis by secreting vascular endothelial cell growth factor C (VEGF-C), although the precise mechanism remains unclear. METHODS: Intramyocardial injections of adeno-associated viruses (AAV9) to inhibit the expression of VEGFR3 (VEGFR3 shRNA) or promote the expression of VEGFR3 (VEGFR3 ORF) in the heart; Myh6-mCherry B6 D2-tg mice and flow cytometry were used to evaluate the number of myocellular debris in the mediastinal lymph nodes; fluorescence staining and qPCR were used to evaluate fluorescence analysis; seahorse experiment was used to evaluate the level of glycolysis of macrophages; Lyz2𝐶𝑟𝑒, VEGFCfl/fl, and PFKFB3fl/fl mice were used as a model to knock out the expression of VEGF-C and PFKFB3 in macrophages. RESULTS: The escalation of VEGFR3 in cardiac tissue can facilitate the drainage of myocardial debris to the mediastinal lymph nodes, thereby improving cardiac function and reducing fibrosis after reperfusion injury. Conversely, myeloid VEGF-C deficiency displayed an increase in macrophage counts and inflammation levels following reperfusion injury. The inhibition of the critical enzyme PFKFB3 in macrophage glycolysis can stimulate the manifestation of VEGF-C in macrophages. A deficiency in myeloid PFKFB3 is associated with induced lymphangiogenesis following reperfusion injury. CONCLUSIONS: Our initial investigations suggest that the suppression of PFKFB3 expression in macrophages could potentially stimulate the production of VEGF-C in these immune cells, which in turn may facilitate lymphangiogenesis and mitigate the inflammatory effects of I/R injury.


Assuntos
Linfangiogênese , Infarto do Miocárdio , Fosfofrutoquinase-2 , Traumatismo por Reperfusão , Animais , Camundongos , Linfangiogênese/genética , Linfangiogênese/fisiologia , Macrófagos/metabolismo , Infarto do Miocárdio/genética , Traumatismo por Reperfusão/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
9.
Nat Commun ; 14(1): 8389, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104163

RESUMO

Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Linfedema/patologia , Transdução de Sinais
10.
Ophthalmic Res ; 66(1): 1128-1138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37997780

RESUMO

INTRODUCTION: The purpose of this study was to determine if conjunctival lymphangiogenesis can be induced using adenoviral delivery of vascular endothelial growth factor C (VEGF-C). METHODS: Seventeen New Zealand white rabbits received a subconjunctival injection containing 3.5 × 107 plaque-forming units of an adenoviral vector containing the gene-encoding VEGF-C (Ad-VEGF-C). The contralateral eye was used for control experiment (the same volume of either saline or an empty vector). After 2 weeks, the animals were examined with trypan blue conjunctival lymphangiography, and the eyes were harvested for histology and immunohistochemistry (podoplanin and CD31). RESULTS: Trypan blue conjunctival lymphangiography revealed significantly more extensive conjunctival vessel network in the Ad-VEGF-C group compared with control: 1.35 ± 0.67 versus 0.28 ± 0.17 vessel length/analysed area (p = <0.0001). This finding was confirmed with immunohistochemistry, where a significant increase in the number of lymphatic vessels was found compared to control; 34 ± 9 per mm2 versus 13 ± 8 per mm2 (p = 0.0019). Furthermore, there was a significant increase in lymphatic cross-sectional area; 32,500 ± 7,900 µm2 per mm2 versus 17,600 ± 9,700 µm2 per mm2 (p = 0.0149). Quantification of blood vessels revealed no significant difference in blood vessel density between Ad-VEGF-C and control; 19 ± 9 per mm2 versus 14 ± 8 per mm2 (p = 0.1971). There was no significant difference in total blood vessel area; 13,200 ± 7,600 µm2 per mm2 versus 7,100 ± 3,000 µm2 per mm2 (p = 0.0715). Eyes treated with an adenoviral vector (VEGF-C or empty vector) responded with a reactive cellular response, predominantly lymphocytes, towards the vector. CONCLUSION: The study demonstrates the feasibility of inducing conjunctival lymphangiogenesis with a single subconjunctival injection of Ad-VEGF-C. Future studies will explore how this can be used with a therapeutic purpose.


Assuntos
Linfangiogênese , Fator C de Crescimento do Endotélio Vascular , Coelhos , Animais , Fator C de Crescimento do Endotélio Vascular/genética , Linfangiogênese/fisiologia , Azul Tripano , Túnica Conjuntiva
11.
Methodist Debakey Cardiovasc J ; 19(5): 37-46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028969

RESUMO

This article highlights the importance of the structure and function of cardiac lymphatics in cardiovascular diseases and the therapeutic potential of cardiac lymphangiogenesis. Specifically, we explore the innate lymphangiogenic response to damaged cardiac tissue or cardiac injury, derive key findings from regenerative models demonstrating how robust lymphangiogenic responses can be supported to improve cardiac function, and introduce an approach to imaging the structure and function of cardiac lymphatics.


Assuntos
Doenças Cardiovasculares , Vasos Linfáticos , Humanos , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Coração , Regeneração
12.
Eur J Med Res ; 28(1): 405, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803421

RESUMO

Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.


Assuntos
Linfangiogênese , Neoplasias Gástricas , Humanos , Linfangiogênese/fisiologia , Neoplasias Gástricas/metabolismo , Metástase Linfática , Transdução de Sinais , Microambiente Tumoral
13.
Cell Rep ; 42(7): 112777, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37454290

RESUMO

Lymphatic capillaries develop discontinuous cell-cell junctions that permit the absorption of large macromolecules, chylomicrons, and fluid from the interstitium. While excessive vascular endothelial growth factor 2 (VEGFR2) signaling can remodel and seal these junctions, whether and how VEGFR3 can alter lymphatic junctions remains incompletely understood. Here, we use lymphatic-specific Flt4 knockout mice to investigate VEGFR3 signaling in lymphatic junctions. We show that loss of Flt4 prevents specialized button junction formation in multiple tissues and impairs interstitial absorption. Knockdown of FLT4 in human lymphatic endothelial cells results in impaired NOTCH1 expression and activation, and overexpression of the NOTCH1 intracellular domain in Flt4 knockout vessels rescues the formation of button junctions and absorption of interstitial molecules. Together, our data reveal a requirement for VEGFR3 and NOTCH1 signaling in the development of button junctions during postnatal development and may hold clinical relevance to lymphatic diseases with impaired VEGFR3 signaling.


Assuntos
Células Endoteliais , Vasos Linfáticos , Receptor Notch1 , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Linfangiogênese/fisiologia , Vasos Linfáticos/metabolismo , Camundongos Knockout , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
14.
Adv Sci (Weinh) ; 10(26): e2303246, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409440

RESUMO

Lymphangiogenesis in tumors provides an auxiliary route for cancer cell invasion to drainage lymph nodes, facilitating the development of lymphatic metastasis (LM). However, the mechanisms governing tumor lymphangiogenesis and lymphatic permeability in gastric cancer (GC) remain largely unknown. Here, the unprecedented role and mechanism of cysteine-rich intestinal protein-1 (CRIP1) in mediating the development of GC LM is uncovered. A series of assays are performed to identify downstream targets of CRIP1, and rescue experiments are performed to confirm the effects of this regulatory axis on LM. CRIP1 overexpression facilitates LM in GC by promoting lymphangiogenesis and lymphatic vessel permeability. CRIP1 promotes phosphorylation of cAMP responsive element binding protein 1(CREB1), which then mediates vascular endothelial growth factor C (VEGFC) expression necessary for CRIP1-induced lymphangiogenesis and transcriptionally promotes C-C motif chemokine ligand 5 (CCL5) expression. CCL5 recruits macrophages to promote tumor necrosis factor alpha (TNF-α) secretion, eventually enhancing lymphatic permeability. The study highlights CRIP1 regulates the tumor microenvironment to promote lymphangiogenesis and LM in GC. Considering the current limited understanding of LM development in GC, these pathways provide potential targets for future therapeutics.


Assuntos
Neoplasias Gástricas , Fator C de Crescimento do Endotélio Vascular , Humanos , Metástase Linfática , Fator C de Crescimento do Endotélio Vascular/metabolismo , Microambiente Tumoral , Linfangiogênese/fisiologia , Neoplasias Gástricas/metabolismo , Proteínas de Transporte , Proteínas com Domínio LIM/metabolismo
15.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188950, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419192

RESUMO

Ovarian cancer (OVCA) is the second most common gynecological cancer and one of the leading causes of cancer related mortality among women. Recent studies suggest that among ovarian cancer patients at least 70% of the cases experience the involvement of lymph nodes and metastases through lymphatic vascular network. However, the impact of lymphatic system in the growth, spread and the evolution of ovarian cancer, its contribution towards the landscape of ovarian tissue resident immune cells and their metabolic responses is still a major knowledge gap. In this review first we present the epidemiological aspect of the OVCA, the lymphatic architecture of the ovary, we discuss the role of lymphatic circulation in regulation of ovarian tumor microenvironment, metabolic basis of the upregulation of lymphangiogenesis which is often observed during progression of ovarian metastasis and ascites development. Further we describe the implication of several mediators which influence both lymphatic vasculature as well as ovarian tumor microenvironment and conclude with several therapeutic strategies for targeting lymphatic vasculature in ovarian cancer progression in present day.


Assuntos
Vasos Linfáticos , Neoplasias Ovarianas , Humanos , Feminino , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Neoplasias Ovarianas/patologia , Linfangiogênese/fisiologia , Linfonodos/patologia , Microambiente Tumoral
16.
Compr Physiol ; 13(3): 4945-4984, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358506

RESUMO

Following significant advances in lymphatic biology, the important role of kidney lymphatics in kidney function and dysfunction is now being more fully appreciated. Kidney lymphatics begin in the cortex as blind-ended lymphatic capillaries and then coalesce into larger lymphatics that follow the main blood vessels out through the kidney hilum. Their function in draining interstitial fluid, macromolecules, and cells underpins their important role in kidney fluid and immune homeostasis. This article provides a comprehensive overview of recent and more established research findings on kidney lymphatics and the implications of these findings for kidney function and disease. The use of lymphatic molecular markers has greatly expanded our knowledge of the development, anatomy, and pathophysiology of kidney lymphatics. Significant recent discoveries include the diverse embryological source of kidney lymphatics, the hybrid nature of the ascending vasa recta, and the effects of lymphangiogenesis on kidney diseases such as acute kidney injury and renal fibrosis. On the basis of these recent advances, there is now an opportunity to link information from across multiple research disciplines to drive a new era of lymphatic-targeted therapies for kidney disease. © 2023 American Physiological Society. Compr Physiol 13:4945-4984, 2023.


Assuntos
Vasos Linfáticos , Humanos , Sistema Linfático/anatomia & histologia , Rim , Linfangiogênese/fisiologia
17.
Clin Sci (Lond) ; 137(8): 597-601, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37075761

RESUMO

Hypertension is associated with the activation of the immune and lymphatic systems as well as lymphangiogenesis. The changes in the lymphatic system are considered an adaptive response to mitigate the deleterious effects of immune and inflammatory cells on the cardiovascular system. In the article recently published in Clinical Science by Goodlett and collaborators, evidence is shown that inducing renal lymphangiogenesis after the establishment of hypertension in mice is an effective maneuver to reduce systemic arterial blood pressure. In this commentary, we will briefly review what is known about the relationship between the activation of the immune and lymphatic systems, and the resulting effects on systemic blood pressure, summarize the findings published by Goodlett and collaborators, and discuss the impact of their findings on the field.


Assuntos
Hipertensão , Vasos Linfáticos , Camundongos , Animais , Pressão Sanguínea , Sistema Linfático , Linfangiogênese/fisiologia , Artérias
18.
Surv Ophthalmol ; 68(4): 713-727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36882129

RESUMO

The cornea is a densely innervated avascular tissue showing exceptional inflammatory and immune responses. The cornea is a site of lymphangiogenic and angiogenic privilege devoid of blood and lymphatic vessels that limits the entry of inflammatory cells from the adjacent and highly immunoreactive conjunctiva. Immunological and anatomical differences between the central and peripheral cornea are also necessary to sustain passive immune privilege. The lower density of antigen-presenting cells in the central cornea and the 5:1 peripheral-to-central corneal ratio of C1 are two main features conferring passive immune privilege. C1 activates the complement system by antigen-antibody complexes more effectively in the peripheral cornea and, thus, protects the central corneas' transparency from immune-driven and inflammatory reactions. Wessely rings, also known as corneal immune rings, are noninfectious ring-shaped stromal infiltrates usually formed in the peripheral cornea. They result from a hypersensitivity reaction to foreign antigens, including those of microorganism origin. Thus, they are thought to be composed of inflammatory cells and antigen-antibody complexes. Corneal immune rings have been associated with various infectious and noninfectious causes, including foreign bodies, contact lens wear, refractive procedures, and drugs. We describe the anatomical and immunologic basis underlying Wessely ring formation, its causes, clinical presentation, and management.


Assuntos
Doenças da Córnea , Vasos Linfáticos , Humanos , Complexo Antígeno-Anticorpo , Córnea , Linfangiogênese/fisiologia
19.
Lymphat Res Biol ; 21(4): 372-380, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36880955

RESUMO

Background: Lymphedema is an intractable disease with no curative treatment available. Conservative treatment is the mainstay, and new drug treatment options are strongly needed. The purpose of this study was to investigate the effect of roxadustat, a prolyl-4-hydroxylase inhibitor, on lymphangiogenesis and its therapeutic effect on lymphedema in a radiation-free mouse hindlimb lymphedema model. Methods and Results: Male C57BL/6N mice (8-10 weeks old) were used for the lymphedema model. Mice were randomized to an experimental group receiving roxadustat or a control group. The circumferential ratio of the hindlimbs was evaluated, and lymphatic flow of the hindlimbs was compared by fluorescent lymphography up to 28 days postoperatively. The roxadustat group showed an early improvement in hindlimb circumference and stasis of lymphatic flow. The number and area of lymphatic vessels on postoperative day 7 were significantly larger and smaller, respectively, in the roxadustat group compared with the control group. Skin thickness and macrophage infiltration on postoperative day 7 were significantly reduced in the roxadustat group compared with the control group. The relative mRNA expression of hypoxia-inducible factor-1α (Hif-1α), vascular endothelial growth factor receptor-3 (VEGFR-3), vascular endothelial growth factor-C (VEGF-C), and Prospero homeobox 1 (Prox1) on postoperative day 4 was significantly higher in the roxadustat group compared with the control group. Conclusions: Roxadustat demonstrated a therapeutic effect in a murine model of hindlimb lymphedema through promotion of lymphangiogenesis through the activation of HIF-1α, VEGF-C, VEGFR-3, and Prox1, suggesting the potential of roxadustat as a therapeutic option in lymphedema.


Assuntos
Linfedema , Inibidores de Prolil-Hidrolase , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Membro Posterior , Linfangiogênese/fisiologia , Linfedema/tratamento farmacológico , Camundongos Endogâmicos C57BL , Inibidores de Prolil-Hidrolase/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
20.
J Gene Med ; 25(5): e3480, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36750632

RESUMO

BACKGROUND: Tumor lymphangiogenesis is a critical component in the progression of cancers and specific microRNAs have been reported to be implicated in this process. Recent studies revealed the involvement of miR-1236 in lymphangiogenic signaling by targeting vascular endothelial growth factor receptor 3 (VEGFR3). However, the prognostic importance of miR-1236 and its clinical relevance for lymphangiogenesis in ovarian cancer (OC) remains unclear. METHODS: The study included 52 ovarian tumors and 28 normal ovarian tissues. Quantitative real-time PCR was utilized to analyze the VEGFR3, VEGF-C, LYVE-1 and PROX1 mRNA expression as well as miR-1236. VEGFR3 protein expression was measured by immunohistochemistry staining. Immunohistochemistry for the podoplanin marker (D2-40) was performed to measure lymphatic vessel density (LVD). In addition, diagnostic evaluation based on the receiver-operating characteristic (ROC) curve was performed. The influence of miR-1236 on overall survival was evaluated by Kaplan-Meier method. RESULTS: Here, we show that miR-1236 expression was significantly decreased in ovarian tumors compared with control tissues (p < 0.001) and correlated with advanced clinical stage, lymph node metastasis, distant metastasis and patient survival (All P < 0.05). Moreover, in ovarian tumors, LVD as well as the gene expression of VEGFR3, VEGF-C and LYVE-1, but not PROX1, were found to be remarkably higher compared with control tissues. We also detected a more robust positive staining for VEGFR3 in OC tissues than in control tissues. Furthermore, our results demonstrated an inverse association of miR-1236 expression with LVD, VEGFR3, LYVE-1 and PROX1 expression in OC tissues. The ROC curve analysis indicated that miR-1236 expression has the potential to be used as a diagnostic and prognostic biomarker in OC. Survival analysis further verified a lowered overall survival rate in patients with low miR-1236 expression than in those with high expression. CONCLUSIONS: Our results provide evidence for the translational involvement of miR-1236 in the lymphangiogenesis of OC by regulating lymphangiogenesis-related factors and support the clinical importance of miR-1236 as a new diagnostic and prognostic biomarker for OC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/análise , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...